Influence of emulsifiers on double emulsion stability

Muschiolik, G.1), Knoth, A.2), Bindrich U.3)

1) Food Innovation Consultant, Potsdam
2) Gutena Nahrungsmittel GmbH, Apolda
3) DIL e.V., Quakenbrück

www.muschiolik.de
Agenda

- What are double (multiple) emulsions?
- Emulsion preparation, influence of homogenization method
- Influences of emulsifiers
 - W/O emulsifier
 - O/W emulsifier
- Summary
What are double (multiple) emulsions?
Double emulsions

Definition:
Droplets of a dispersed phase (Oil or Water) contain small droplets of another phase

Special multiple types: O/W/O/W/O and W/O/W/O/W
Advantages of double emulsions

- Controlled aroma release
- Encapsulation of bioactive components
- Reduction of fat content without changing the mouthfeeling

Problem:
- Finding the optimal ingredient composition to
- realize a long time stability

Important:
Selection of emulsifier type and emulsifier combination
Structure of confectionery W/O/W

W_2

sucrose/glucose

e.g. 14.7 – 73.5 %

O/W emulsifier

W_1

Fat or Oil

primary surface

Secondary surface

W/O emulsifier

Sucrose/glucose
e.g. 14.7 – 73.5%

Thickener

Osmotic agent

Healthy additives

20 μm
Emulsion preparation, influence of homogenization method
Principle of formation multiple emulsions

1. W_1/O-Emulsion

W_1-phase:
- Water + sugar
- And hydrocolloid,
- Osmotic pressure regulated

Oil-phase + W/O emulsifier:
- Fat composition tailored

W_1/O-emulsion:
- Particle size of primary water droplets
 - $\sim 1 \mu m$
Principle of multiple emulsion preparation

2. $W_1/O/W_2$-Emulsion

- W_1/O-Emulsion
- W_2-phase + water + sugar
- O/W emulsifier

Emulsifying low energy

$W_1/O/W_2$-Emulsion

Particle size of filled oil droplets with $W_1 \sim 5 – 7 \mu m$
Methods for emulsion preparation
(emulsification of W_1/O in W_2)

Avoid:
Disruption of internal emulsion droplets (W_1) and fusion with the external phase (W_2)

Emulsification methods for multiple systems are described by:

Muschiolik and Bunjes, 2007 (Behr’s Verlag, 2007)
Stability of W/O/W is influenced by:

- Size of inner water droplets (W_1)
- Oil droplet size
- Osmotic gradient between W_1 and W_2
- Laplace curvature pressure
- Water flow between W_1 and W_2 (influenced by osmotic gradient)
- Viscosity of the emulsion phases
- **Interaction between W/O and O/W-emulsifier**

Hindrance between different emulsifiers should be prevented!
Influence of emulsifiers
W/O emulsifier lecithin
PC depleted and PE enriched
< 5% > 11%

Hydrophobic lecithin with higher PE content as W/O emulsifier
W/O-Premix prepared with different lecithins

Improved W/O stability with higher PE content

W/O : 30/70; O-phase: sunflower oil, emulsion preparation at 3000 rpm, 2 min; \(\geq 50 ^{\circ}C \); Homogenizer MPW-302 (Metronex, Poland)
Lecithin-screening
- W/O emulsions with 0.75 % Lecithin (2.5 % in O)

Cumulative particle-size distribution for W-droplets
Flow behaviour of W/O-Emulsionen prepared with lecithin

Due to aggregation of water particles W/O emulsions with lecithin are higher viscous
Influences of emulsification methods
- W/O with lecithin -

A: 10 ml, 240 s ultrasonic, 60 % amplitude; B: 30 ml, 240 s ultrasonic, 60 % amplitude

0.2 % XPS and 1.5 % whey protein in W; 2.5 % PC↓ in O; 50 °C
W/O with lecithin

W/O phases prepared with lecithin

- are more viscous than w/o phases with PGPR

and

- the stability depends strongly on the emulsifying methods
W/O emulsifier PGPR

Polyglycerol-Polycinoleate E476

ZZuIV, 29.01.98, appendix 7

- max. 4 g/kg in spreads with less than 41 % fat, spreads with < 10 % fat and salat dressings
- max. 5 g/kg in sweets with cacao
Lecithin or PGPR in O
- Influence of NaCl and WPI in W₁-phase -

2.5 % PC + 3.0% Gelatine + 0.2% Xanthan

4.0 % PGPR + 3 % Gelatine
Influence of other emulsion components:

- Electrolytes (NaCl) are essential to achieve coalescence-stable emulsions prepared with PGPR.

- Electrolytes (NaCl) in emulsions containing lecithin contribute more to coalescence of water droplets and phase separation (other components are necessary to regulate the osmotic pressure, e.g. glucose).

- Combination of lower surface active whey protein with xanthan in W-phase (1.5 % protein + 0.2 % XPS in W) reduces the W-droplets additionally when W/O emulsions are prepared with PC depleted lecithin (2.5 % in O).
Influence of emulsification method
- W/O with PGPR -

4 % PGPR
Rotor-stator-system is effective!
W/O emulsifier sucrose esters

- Sucrose erucate ER-190, HLB 1
- Sucrose erucate ER-290, HLB 2

- Sucrose esters, which are allowed in the European Union have to contain at least 80 % mono-, di-, and tri-esters

- At the present time the tested sucrose esters with HLB 1 and 2 are not permitted

RYOTO® SUGAR ESTER Technical Information
Particle size of W/O
Sugar esters with HLB 1 and HLB 2
(2, 4 and 6 % emulsifier in O; 0.6 % NaCl in W)

MCT: Medium-chain triglyceride (Miglyol 812), Oil: Vegetable oil (BISKIN)
Particle size of W/O
Sugar ester with HLB 1 and HLB 2
(2, 4 and 6 % emulsifier in O)

MCT: Medium-chain triglyceride (Miglyol 812), Oil: Vegetable oil (BISKIN)
Surface area of O-droplets (W/O in W) depending on storage
(Particle size between 26 – 29 µm)

W_2: 25 % dry matter (sugar, milk protein, starch, maltodextrin)
4 % sugar ester (ER 290, HLB 2); PGPR: 4 %;
BF: butter fat; MCT: Miglyol 812; Oil: vegetable oil
$W_1/O = 20:80, (W_1/O) : W_2 = 20:80$
Summarised effects of sugar esters

- Esters with HLB 2 are more effective in forming small W_1 particles than esters with HLB 1
- Application of NaCl in W_1 supports the formation of small water droplets
- W/O are stable with 4 % sugar ester in O (HLB 2) and 0.6 % NaCl in W_1
- The size of O-droplets (surface area) in W/O/W is comparable to emulsions with PGPR
Emulsifiers for W_1/O in W_2
Emphasized O/W emulsifiers for double emulsions

- Native proteins (whey, vegetable)
- Protein-ionic polysaccharide mixtures
 (a high zeta-potential is advantageous)
- Protein-polysaccharide conjugates

Combination of proteins with ionic polysaccharides in W_2 increases the barrier function!

Structural compatibility between W/O- and O/W-emulsifiers is of importance!
Protein-polysaccharide conjugate at O/W-surfaces

Available space for adsorbing at oil surfaces depends on the polysaccharides molecule weight

according to Dunlap u. Côté, 2005
Milk protein and protein-pectin-conjugate as O/W-emulsifier in W/O/W

W/OW were heated for 10 min at 90 °C, and stored for 6 weeks

Milk protein concentrate in W_2
Conjugate in W_2

Double emulsions with conjugate in W_2 are heat stable! No aggregation of O-droplets!
Influence of O-phase on W/O/W stability

The **stability** can be improved by using O-phases with a high degree of saturated fatty acids, i.e. by fat phases with a low polarity

(promotion of a close packed condensed interfacial film)
Conclusions

Stable W/O/W can be prepared by using

W/O emulsifiers in O:
- 4 % PGPR (0.6 % NaCl in \(W_1\)) or
- 2.5 - 6 % PE enriched lecithin (without NaCl) or
- (4 % sucrose ester; HLB 2; 0.6 % NaCl)

O/W emulsifiers in \(W_2\):
- Whey or vegetable protein or
- Protein-ionic polysaccharide conjugates

Low molecular weight **W/O emulsifier**
+ high molecular weight **O/W emulsifier**
= better compatibility and no negative interactions!
Conclusions

The stability of multiple systems depends on:

- osmotic balance, electrolyte and ionic status and
- fat phase composition (saturation degree, polarity)

The selection of emulsifiers for double emulsions has to consider the electrolyte and ionic status.
Acknowledgement

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn).

Project AiF 14087 BG
Main publications

• Muschiolik/Bunjes,
 Multiple Emulsionen
 Behr’s Verlag, 2007

• Muschiolik, G.
 Multiple emulsions for food use,

• Preissler, P.
 Süßwarenfüllmassen auf Emulsionsbasis
 Logos Verlag Berlin, 2006

• Weiss, J. and Muschiolik, G.
 Factors affecting the droplet size of water-in-oil emulsions (W/O)
 and the oil globule size in water-in-oil-in-water emulsions (W/O/W),
 J. Dispersion Sci. and Technol. 28 (2007) 703-716